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Introduction  

In their effort to generate novel productive knowledge, firms are largely dependent on the network 

of inter-organizational relations they are embedded in (Lundvall 1988), and this is especially true 

for firms operating in industries where knowledge is widely dispersed, complex, and rapidly 

expanding (Powell et al., 1996). Whether through formal strategic alliances (Eisenhardt and 

Schoonhoven, 1996; Powell et al. 1996), technology partnerships (Hagedoorn and Schankenraad, 

1994), collaboration in research projects (Shan et al., 1994), or board interlocks (Goes and Ho Park, 

1997), inter-organizational networks diffuse relevant knowledge across network members that 

could hardly be gained through arms-length market exchanges. Accordingly, in recent years a 

considerable body of theoretical and empirical research has accumulated that explains which 

characteristics of a firm’s network position promote firm’s inventive performance (see Borgatti and 

Foster 2003 for a review).  

While this line of research has proved enormously useful, a limit is that it is based on an 

essentially static perspective, which portrays inter-organizational networks as structures merely 

funnelling knowledge flows across network members. The present article aims to extend this 

perspective by emphasizing that in addition to a structure of knowledge conduits (Owen-Smith 

and Powell 2004), inter-organizational networks encompass knowledge wellsprings, i.e. active 

sources of knowledge generation. An example may serve to clarify our point. In 1975 Chunk Peddle, the 

founder of MOS Technology, developed and patented a microprocessor chip called 6502. Its speed, power 

and low cost not only appealed Steve Jobs and Steven Wozniak, future founders of Apple Computers, who 

included this technology in their first Mac, but also produced a whole series of related inventions by MOS 

Technology’s competitors (such as, for example, the model Zilog Z80 patented by Zilog in the late 

seventies). As this example shows, while the structure through which knowledge circulates throughout an 

inter-organizational network tends to remain stable (Walker et al. 1997), organizations continuously learn 

from each other and generate new knowledge in a self-reinforcing cycle; therefore, the knowledge-access 

benefits accruing to a focal firm through its network do not only depend on its network position, but also on 

how much and which new knowledge is being generated by the firm’s network contacts.  

In setting out to analyze inter-organizational networks from this broader perspective, the article 

aims to provide three main contributions. First, we will show how the inventive performance of a firm is 

affected by dynamics of knowledge growth that take place among a firm’s network contacts, net of the 



effects of structural characteristics of firm’s own network position. That is, we will argue and demonstrate 

that holding constant a firm’s positional characteristics, its inventive performance varies as a function of the 

knowledge generated by its contact firms. Second, we will show that by taking into account these dynamics 

of network-level knowledge growth, new insights can be gained about the effects deriving from a firm’s 

network position; in particular, by looking at inter-organizational networks as encompassing both 

knowledge conduits and knowledge wellsprings, we will shed new light on the important debate on the 

putative effects of network closure and network brokerage. Third, we will provide evidence that due to the 

self-reinforcing mechanism behind these network-level dynamics, firms tend to cluster into either fast-

growing or sluggish sub-networks.   

The article proceeds as follows. We begin by explicating the notion of knowledge growth as 

recombination (Fleming 2001), on the basis of which we flesh out our hypotheses on the effects of inter-

organizational networks on firm-level inventive performance. Subsequently, we propose that the causal 

mechanism by which network-level knowledge growth dynamics affects firm-level knowledge growth can 

be straightforwardly modeled by means of a “network autocorrelation” (Leenders, 2002). Next, we illustrate 

our data, which describes all patents and patent citations made in the semiconductor industry between 1975 

and 2002, and we discuss why it provides an appropriate empirical setting for our test. Finally, we discuss 

the results of our analyses, we elaborate on the implications of our study, and we point out the next steps 

that need be taken to improve on this line of research.  

1. Theory and hypotheses  

Particularly in high-technology industries (Rosenkopf and Nerkar, 2001), business performance is 

strongly related to a firms’ ability to constantly generate new useful technological knowledge. For that 

reason, the mechanisms by which new technological knowledge is generated have received increasing 

attention in recent years. To date, a good deal of consensus has formed around the view that knowledge 

generation is a problem-solving process wherein solutions are discovered through recombinant search (e.g., 

Fleming 2001). From this perspective, inventions stem either from the novel combination of knowledge 

embedded in existing technological components (Gilfillan, 1935; Schumpeter, 1939; Usher, 1954; Nelson 

and Winter, 1982; Basalla, 1988, Weitzman, 1996; Hargadon and Sutton, 1997; Fleming, 2002) or from 

reconfigurations of existing combinations (Henderson and Clark, 1990).  Recombinant knowledge inputs are 

often taken from technological solutions developed within the boundaries of a firm (Katila, 2002; Katila and 



Ahuja, 2002; Nerkar, 2003). Recombinant search, however, can also involve knowledge residing across firms 

(Rosenkopf and Nerkar, 2001; Song et al., 2003) or even across industries (Katila, 2002).  

Effectively recombining knowledge inputs into a useful invention requires familiarity with those 

knowledge inputs. Familiarity, in turn, increases with a firm’s mastery of the scientific and engineering 

know-how embodied in the technological solutions wherein knowledge inputs reside, as well with firm’s 

memory of both failed and successful recombination efforts involving those technological solutions 

(Hargadon and Fanelli, 2002). For both these reasons, the greater is a firm’s experience in recombining 

knowledge inputs generated by a given source, the more effective tends to be the process of recombinant 

search. Thus, to the extent that a firm’s knowledge inputs are generated outside a firm’s boundaries, firms 

embedded in a stable network of inter-organizational knowledge flows tend to be better innovators than 

firms whose exchanges are based primarily on arms-length relations (Powell 1990).  

As said, we aim to develop the argument that inter-organizational networks encompass both 

knowledge conduits and knowledge wellsprings. That is, we posit that the knowledge inputs a firm has 

access to through its network depend not only on the position the firm occupies within the network, but 

also on how actively a firm’s network contacts generate new knowledge. Therefore, regardless of a firm’s 

position within its inter-organizational network, we expect a firm’s inventive performance to be enhanced 

to the extent that the firms it regularly takes knowledge from are themselves innovative; further, we argue 

that the impact of a contact firm on the focal firm is determined by the frequency with which the latter 

takes knowledge from the former. Hence, we propose the following hypothesis:  

HYPOTHESIS 1: Ceteris paribus, a firm’s inventive performance increases with the inventive performance of 

its contacts, where the relative impact of each contact firm is determined by the frequency with which the 

focal firm takes knowledge from it.  

If it true that a firm’s inventive performance depends on the inventive performance of its contact 

firms, then it is also true that inventive performance at the level of a firm’s inter-organizational network is 

driven by a self-reinforcing dynamics. That is, each increase in performance taking place within a firm’s 

ego-network will enhance, directly or indirectly, the inventive performance of all other firms in the ego-

network; similarly, each decrease in the inventive performance of a firm will hinder to some degree the 

process of knowledge generation of the whole network around the firm. We reckon that if this self-



reinforcing process of knowledge growth is sufficiently strong relative to exogenous antecedents of firm’s 

inventive performance, then we should be able to discern empirically that firms that are closely connected 

to one another exhibit more similar inventive performance than disconnected firms. Hence, we propose the 

following hypothesis:  

HYPOTHESIS 2: Clusters of closely connected firms should exhibit either a predominantly high or a 

predominantly low inventive performance    

As said, prior research has debated extensively whether inventive performance is facilitated when a 

firm occupies a brokering or, conversely, a closed position within an inter-organizational network. From the 

perspective developed in the present paper, it can be argued that a key contingency determining which of 

the two positions is most beneficial is the inventive performance of the firms within a firm’s ego-network. 

Following the brokerage argument, we take the position that firms bridging otherwise unconnected sub-

networks access a broader variety of knowledge elements, which enhances their inventive performance by 

securing a broad spectrum of recombinant inputs (McEvily and Zaheer, 1999; Zaheer and Bell, 2005; 

Rosenkopf and Nerkar, 2001; Song et al., 2003). There is a limit to this principle, though, because firms have 

limited absorptive capacity (Cohen and Levinthal, 1990), and hence they can handle on so much variety in 

their recombinant search (Fleming 2001). When a focal firm’s contacts generate knowledge at a fast pace 

this limit is soon reached, because the variety of knowledge to be handled goes through the ceiling when 

many distinct knowledge trajectories evolve rapidly. Therefore, we expect brokering firms to be able to rip 

the knowledge-access benefits inherent in their diverse ego-network only to the extent that their contacts 

generate new knowledge at a relatively low pace. Conversely, we expect firms to be able to more easily 

exploit the knowledge advances made by their contact firms when the latter are tightly related to one 

another and, hence, their trajectories of knowledge growth are overlapping. In this case, indeed, the new 

knowledge generated by a focal firm’s contacts is likely to be absorbed more easily and, thus, the benefits 

deriving from network-level knowledge growth should be ripped more fully. These arguments lead us to 

formulate our third and last hypothesis.  

HYPOTHESIS 3: The positive effect of network-level inventive performance on a firm’s inventive 

performance varies inversely with firm’s network brokerage  



2. A network model of recombinant knowledge growth  We have argued that in their effort to generate new 

knowledge, firms recombine knowledge inputs both from within their own organizational boundaries and 

from other firms. Building on this notion, Figure 1 sketches a network representation of the process of 

knowledge recombination in the context of an inter-organizational network.  

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> Figure 1 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<  

For simplicity, let us consider three firms, A, B and C, generating respectively 100, 200, and 300 

inventions over a given time interval. Let us focus on the ego network of firm A. The inventions generated 

in A resulted from the recombination of A’s own knowledge base 250 times, and of knowledge developed by 

B 50 times (or, equivalently, knowledge spilled over 250 times from previous to current inventions in A and 

50 times from previous inventions in B to current inventions in A). Moreover, inventions generated in A 

have served as input for knowledge recombinations that led to new inventions in C 20 times, and in B 70 

times.  This simple representation can be generalized into a network model. Formally, a network Nt at time 

interval t is a four-tuple, Nt = 〈Jt , Lt , Vt,, At〉, which consists of a finite set of nodes, tJ  = {i,…,k,q,…,j}; a 

finite set of arcs (i.e., directed ties) between the nodes, tL  = {lik,t, …, lqj,t}; a function Vt(.) mapping arcs on 

pertaining arc values h (i.e., tie weights); and, a function tA (.) mapping nodes on node values. Nodes 

represent knowledge domains, and their values represent knowledge output; arc value hij represents the 

number of times that ideas belonging to the right-hand subscript node have been used in idea-combinations 

of the left-hand subscript node; and, arc directions point to the nodes benefiting from the recombination. 

Our nodes represent firms; ties represent recombinations of ideas taken from the same or another firm; tie 

values indicate the number of recombinations between two firms or within a single firm; node values 

represent domains’ inventive performance. On the basis of this network model, we can compute the usual 

network measures characterizing a firm’s position in a network – i.e., centrality and brokerage –, as well as a 

measure capturing the extent to which the inventive performance of a firm’s ego network affects the 

inventive performance of a focal firm. For the latter measure, we use a “network autocorrelation” parameter 

(Doreian 1984; Leenders 2002), as explicated below.   

 
y= ρWy+ ε       [1]  



In Equation 1, y is a vector measuring the inventive performance of each firm in a focal firm’s network; W 

is a weight matrix specifying the impact that the inventive performance of each contact firm has on the 

inventive performance of the focal firm; and ρ is the network autocorrelation parameter to be estimated 

within a regression setting (along with a vector X of exogenous independent variables). As it appears, 

through this network autocorrelation model we can estimate the extent to which a focal firm’s inventive 

performance varies with the inventive performance of the firms in its ego-network, where the impact of 

each contact firm is assumed to be proportional to the frequency with which the focal firm takes knowledge 

from it.  

3. Data and methods  

Since the pioneering works of Schmookler (1966) and Scherer (1965), a large body of research has 

used patent data to study technological innovation and economic development. Patent data have received 

much attention because they are systematically compiled, they have detailed information, and they are 

continuously available over time. In each patent document, there is information concerning the patenting 

firm, the inventor, the geographic location of the patenting firm, the technology classes the patent belongs 

to, and the so called patent’s prior art – i.e., the citations a patent makes to earlier patents it built on. In this 

study, we use patent and patent citations data both to trace the inter-organizational network of knowledge 

flows and to gauge firms’ inventive performance, focussing on the US semiconductor industry in the period 

between 1976 and 2002.  

3.1 Tracing inter-organizational knowledge flows  

Because a patent’s prior art indicates which earlier patents the focal patent built on, prior art has 

been extensively used to trace knowledge flows across individuals (Nerkar and Paruchuri, 2003), firms 

(Mowery et al., 1996; Stuart and Podolny, 1996; Song et al, 2003; Rosenkopf and Almeida, 2003), industries 

(Griliches and Lichtenberg, 1984; Scherer, 1984), and countries (Jaffe, Trajtenberg and Henderson, 1993; 

Branstetter, 1996). We follow this same methodology to reconstruct the network of inter-organizational 

knowledge flows in the US semiconductor industry. In particular, we look at the patents granted to a focal 

firm, and trace all citations each of these patents makes to earlier patents; because for each patent we know 

the patent holder, we are able to reconstruct the network of inter-organizational knowledge flows, where 

the value of a tie is determined by the number of patent citations made by a focal firm to each contact firm 



within a given time interval.  

While using a patent’s prior art to trace knowledge flows has many advantages, it also has problems. 

For example, some citations are strategically introduced in a patent’s prior art to prevent litigation; 

moreover, quite a large share of patent citations are introduced by the patent examiner after the patent has 

been applied for, and thus can hardly be regarded as indicative of the knowledge inputs the inventor 

recombined. Therefore, assuming that every patent citation is indicative of a knowledge input recombined 

in an invention yields a risk of both Type I and Type II errors (Alcacer and Gittelman 2004). Nonetheless, 

the huge body of research using patents’ prior art to trace knowledge flows guarantees that while somewhat 

problematic, patent citations are reliable indicators of knowledge flows; furthermore, direct validation 

studies have concluded that patent citations are “a valid but noisy measure of technology spillover” (Jaffe et 

al.,1998: 198).   

3.2. Measuring firms’ inventive performance  

As mentioned, we also use patent data to gauge firms’ inventive performance. In so doing, again, we 

follow a long-established methodology. For an invention to be patented, it must consist of knowledge that is 

new, non trivial, and applicable. Accordingly, patent counts are generally regarded as a valuable proxy for 

measuring knowledge growth if the success, or impact, of each patent is taken into account (Grilliches 

1990). If a patented invention consists of knowledge that is useful for the generation of subsequent 

inventions, it will be cited. To say it with Gittelman and Kogut (2003, p. 380): “…because certain patents 

open richer technological veins, the subsequent advances in related technical knowledge encourage more 

innovative efforts in that area and, hence, more patents. These, in turn, cite the initial patents that opened 

this avenue of technological innovation. It is this feedback that carves a trace in the patent patterns.” 

Accordingly, a widely used indicator of the impact of a patent on the advancement of knowledge is counting 

the number of citations it received, which is called forward citations(Griliches 1990). As an indirect 

validation that a patent’s forward citations capture knowledge contribution, forward citations were found to 

be positively related to received royalties (Giummo 2003); to intangible assets, controlled for R&D 

expenditure (Hall cum suis2004); to the value of a patent in the eyes of the patent holder (Harhoff et al. 

1999); and, to the social value of a patent (Trajtenberg 1990). Forward citations were also directly validated 

as a measure of knowledge contribution through surveys of inventors and experts by Albert cum suis(1991), 

and by Jaffe cum suis (2000), and to the best of our knowledge, out of a large body of empirical research no 



published study has disconfirmed the validity of this measure. Therefore, to gauge a firm’s inventive 

performance within a given time interval, we use the number of forward patent citations received by the 

patents granted to that firm within that time interval.   

3.3. Selection and classification of firms  

We focus our analysis on the US semiconductor industry in the period between 1976 and 2002, for four 

main reasons. First, patenting is extensively carried out in the semiconductor industry, and all major firms, 

regardless of national origin, patent their inventions in the USPTO (Almeida and Kogut, 1999). Second, 

inter-organizational collaboration, personnel mobility and knowledge sharing through communities of 

practice are in part and parcel in the semiconductor industry, which makes inter-organizational knowledge 

flows particularly salient. Third, several studies have validated the use of patent citation data to track 

knowledge flows across company boundaries, as well as firms’ inventive performance, within this industry 

(Appleyard 1996; Mowery, Oxley and Silverman, 1996; Almeida and Kogut, 1999; Almeida and Phene, 2004; 

Stuart, 2000). Fourth, the semiconductor industry is driven by a fast-growing technology, and firms’ ability 

to continuously and speedily improve on their technological knowledge is absolutely crucial for them to be 

able to command a competitive advantage. We selected target firms by following Hall and Ziedonis (2001), 

and matched Compustat and USPTO data for 180 firms that actively patented for at least three years 

between 1976 and 2002. Our sample is consistent with both recent works in the semiconductor industry 

(Henisz and Macher, 2004) and with the list of semiconductor firms monitored by Dataquest, a specialized 

market research provider. Furthermore, we used business directories (Who owns Whom US, UK and Asia), 

industry sources (ICE annual volume 1997) and prior research (Hall and Ziedonis, 2001) to identify the 

founding date of each firm, and to define whether a firm is an integrated device manufacturer, a fabless 

firm, or a vertically integrated producer. We classified as other all-remaining types (foundries, equipment 

firms producing components for semiconductor firms, and service providers other than fabless).  

 
3.4 Modelling the evolution of the inter-organizational network  
 

As said, we model the network of knowledge flows connecting the firms operating in the 

semiconductor industry from 1976 and 2002. Consistent with prior studies (e.g., Schilling and 

Phelps 2007), to capture the evolution of this inter-organizational network we partition the 

observation period into 3-years interval. As argued by Stuart and Podolny (1996), 3 years is roughly 



the time that a particular product, design or process remains “new” in the semiconductor industry 

(e.g., each next-generation computer memory lasts approximately 2.5 years on average). Figure 3 

provides a visual representation of the network based on patent grant date1, depicting the pattern 

of knowledge flows in the US semiconductor industry in the period 1976-2002. We visualize firms 

as closer together when they are highly connected by knowledge spillovers, and farer away when 

they are loosely connected or disconnected2. As our sample is characterized by entry and exit of 

firms in each time windows, we summarize the basic statistics of the 9 networks in Table 1.  

3.5 Operationalization of the variables 

 Dependent variable  

Firm inventive performance (INNOVit): For each 3-year interval as defined above, we measured 

firm’s inventive performance as the sum of forward citations (excluding self-citations) received by 

the firm’s patents during the first 5 years after each patent’s grant.  Measuring firms’ inventive 

performance on the basis of the citations received within a five-year interval could engender an 

error, since Hall et al. (2001) showed that it takes 90 years to catch 90% of all citations received by 

an average patent. In order to assess the severity of this error, we rank-ordered the firms in our 

sample based on the sum of citations their patents received during our earliest time window (1976-

1978), and then we rank-ordered them again based on the sum of citations the same patents 

received throughout our entire observation period, i.e., from 1976 to 2002. Spearmans’ rho 

correlation of the rank orders turned out to be as high as 0.982 (p<0.0001), suggesting that using 5-

year intervals to measure forward citations is warranted.   

 

 

                                                 
1 Often, patent’s application year is used instead of patent’s grant year. While we do not expect any significant change to 
occur as a consequence of this alternative choice, we will repeat our analysis using application date.  
2 Clearly, this choice yields a bias if the pattern of citations in early periods of observation differs from more recent pattern 
in a systematic way. In order to assess the magnitude of this bias, we used Quadratic Assignment Procedure (Simpson, 
2001) to regress the most recent 3-year window (2000-2002) on the network based on the whole 27-year observation 
period (1976-2002). The correlation coefficient between the two network configurations is 0.876 (p value 0.0082). Based 
on these results, we concluded that a network representation based on a 3 years is almost as unbiased as one based on the 
whole time period.  
 



Explanatory variables  

Network’s inventive performance(INTERDEPit): As said, we modelled the influence exerted on a 

firm’s inventive output by the inventive output of its ego-network by means of an network 

autocorrelation measure, as defined by Equation 1. The network autocorrelation measure was 

operationalized as follows. To build the weight matrix, Wt , we took all patents granted to any of 

the firms in our sample during each 3-year interval. On the basis of those patents, for each firm in 

our sample we summed the citations made to all other firms, thereby measuring the flow of 

knowledge running to the citing firm from each cited firm. Thus, a tie weight (wijt) between firm 

iand firm j indicates the number of times i cites j during time interval t6. Finally, to make sure that 

our measure is independent of the size of a firm’s patent portfolio, for each 3-year time interval we 

row-normalized the weight matrix. The normalized matrix indicates, for each firm, what 

proportion (pijt) of its total backward citations is made to each of the remaining firms. Therefore, our 

autocorrelation measure is computed as follows:  
 

INTERDEPit= ΣjpijtINNOVjt i ≠j [2]  

Structural holes (STHOit): To compute firm’s network brokerage, we followed Burt (1992) and measured the 

extent to which a firm bridges structural holes in its ego-network.  

Structural holes X Network’s inventive performance (STHOxINTERDEPit): To model how the 

effects of structural holes on a firm’s inventiveness change with the inventive performance of the 

firm’s ego-network, we constructed an interaction term between structural holes and network 

autocorrelation. To overcome potential collinearity, the term was mean-centred (Aiken, West and 

Reno, 1991)  
 

Control variables  

Industry inventive performance(SPILLOVER it): To compute the effects of diffuse knowledge 

spillovers taking place in the semiconductor industry over and above of the ones channelled 

through the inter-organizational network, for each 3-year interval we computed the average 

inventive performance of all nodes in the network, excluding the focal firm.  



 

Firm patent (NPAT it): To account for firms’ accumulated expertise in inventive processes (Phene et al., 

2006), we use the number of patents granted to them within a given time window.  

 

Corporate R&D intensity (RD it): Measures of R&D expenditure have frequently been used as a proxy for a 

firm’s technological resources (e.g., Montgomery and Hariharan, 1991), as well as a measure of the 

investments a firms makes in the production of technological knowledge (Cohen, 1995). Hence, we 

controlled for R&D expenditure, which we expressed as the logarithm of firms’ R&D expenditure (in 

million of dollars) during the pertaining time interval7. Where R&D data were not available (12 cases), we 

used a regression imputation procedure to impute the data for this variable based on other firm-level 

information.  

 
Firm size (SIZE it): A firm’s size is likely to influence its inventive performance in several ways. For example, 

it has been argued that learning, scale, and scope advantages enhance firm’s innovativeness in large 

organizations (Cohen & Levin, 1989; Henderson & Cockburn, 1996). Large firm size can also hinder 

innovation, though. Evaluation of R&D projects in large organizations is difficult, which lowers incentives 

and reduces the productivity of individual researchers (Cohen, 1995). Empirical results on the effects of size 

on product innovation have been mixed, possibly reflecting these multiple underlying mechanisms. 

Although most studies have reported positive effects (e.g., Henderson and Cockburn, 1996), some studies 

have found a negative effect (Mansfield, 1968), or no effect at all (Clark, Chew, & Fujimoto, 1987). We 

measured size as the number of corporate employees (thousands). When employment data were not 

available, we used a regression imputation procedure to impute the data for this variable based on other firm 

level information, using STATA ice function. A total of 74 values were imputed.  

Firm age (AGE it): Prior research agrees that firm age is negatively related with inventive performance, 

because established firms have a higher tendency to incur learning traps than start-ups (Levinthal and 

March, 1993; Ahuja and Lampert, 2001). Older firms tend to create innovations that are less influential on 

subsequent technological development (Phene et al., 2006). To control for these effects, we computed firms’ 

age as the number of years since firm founding.  

Firm Type (IDMit, FABit. VIit, OTHERit): We built a set of dummies to control whether firms are an 



integrated device manufacturer, a fabless, a vertically integrated semiconductor producer or an 

equipment/foundry.  

Citations made (CMADEit): We computed a firm’s total citations made to earlier patents, to make sure that 

our network variables based on backward citations are not influenced by differences in firms’ propensity to 

cite.  

Self citations (SELFRATIOit): Since all the network and patent measures are computed excluding self cites, 

we believe it is important to account for the latter. Furthermore, firms using their own knowledge are 

generally regarded as particularly able to exploit and appropriate their technological inventions (Hall et al. 

2001). To measure the extent to which a firm relies on its own previous knowledge, as opposed to external 

sources, for each firm in each time interval we compute the ratio between backward self-citations and total 

backward citations.  

Technological diversification (TECHDIVit): Prior work has found a positive effect of technological 

diversification on innovativeness (Phene et al. 2006). To control for this effect, we calculate the Herfindal 

index of technological diversification of a firm patent portfolio (i.e., one minus the sum of the squared share 

of patents in each USPTO patent class).   

Geographical diversification (GEODIVit): Prior work has shown mixed evidence regarding the relationship 

between geographic diversification and knowledge creation. We follow Ahuja (2000) and compute the 

Herfindal index of geographic diversification of a firm patent portfolio (i.e., one minus the sum of the 

squared share of patents in each country). Patents were assigned to countries based on the first inventor’s 

nationality.  
 

Time dummies (1979-1981i, 1982-1984i, 1985-1987i, 1988-1990i, 1991-1993i, 1994-1996i, 1997-1999i, 2000-

2002i): We also introduced a set of dummies to control for the effects of time, and for all possible time-

varying exogenous factors (e.g., marcoeconomic fluctuations).  

 



4. Results  

We report summary statistics and correlations between the key variables in Table 2. Eleven firms make no 

citations at all to our initial sample firms; hence, we excluded them from the regression analysis. Moreover, 

for 26 firms we do not have data covering more than one three-year period; because we adopt fixed-effect 

estimation, these observations are dropped. Finally, for 241 firm-period data points we could not observe 

information regarding sales, R&D and employment, but only patenting activity. This is because, in the 

pertaining periods the firm was active but not publicly traded. Given that these observations did not meet 

the requirements for imputation, we decided to drop them. As a consequence of these choices, our 

regression analyses are based on 143 firms, yielding a total of 610 firm-period observations.  

The dependent variable in this study, INNOVit, is a count variable and takes on only nonnegative 

integer values. The linear regression model is inadequate for modelling such variables because the 

distribution of residuals will be heteroscedastic and non-normal. Since our variable shows high variance 

relative to the mean, we used negative binomial regression analysis (Cameron and Trivedi, 1986). We 

estimated both fixed effects and random effects models. In Table 3, we report the results of our analyses. 

Model 1 is a baseline model. All controls behave as expected, with exception of size that has a negative 

effect on firms’ inventive performance. All time dummies are positive and significant, apart from the 

dummy referring to the last period; in this last case, the negative sign reflects data truncation. In model 2, 

we introduce our SPILLOVER variable, representing the average aggregate knowledge output of all nodes in 

the network excluding the focal firm, and which therefore indicates industry-level inventive performance8. 

The effect on firm’s inventive performance is significant and negative (p<0,0001). The result hints to the 

effect of competition for knowledge among firms (Podolny et al. 1996). This result is important because it 

shows that the knowledge produced by other firms can damage a focal firm if the latter is not able to absorb 

and build on that knowledge.   

In model 3, we introduce our network autocorrelation parameter (INTERDEP). As we 

predicted, the inventive performance of a focal firm is positively and significantly associated with 

the inventive performance of the firm’s ego-network (p<0,0001). Thus, firms significantly benefit 

from the inventiveness of the firms in their inter-organizational network, and the benefit brought 

to a focal firm by each contact firm is proportional to the extent to which the focal firm 

recombines knowledge from it. Because these network-level dynamics are underpinned by a self-

reinforcing mechanism, we argued that we should detect empirically clusters of fast-growing firms, 



and clusters of sluggish firms. To be able to detect these clusters, we partitioned the sample into 4 

quartiles based on their average inventive performance over the observation period. Figure 5 is 

obtained through a Spring Embedding algorithm and represents the top performing 25% firms as 

blue nodes, and the 25% slowest growing firms as red nodes. The second and fourth quartiles have 

been removed from the picture to increase the contrast between fast-growing and sluggish firms. 

In the network depicted in Figure 5, the distance between firms is proportional to the frequency of 

knowledge flows between them. As it appears, this representation confirms that inventive 

performance is clustered, with fast-growing firms occupying central positions in the network and 

reciprocally feeding each other’s inventive performance. Low-growth firms, conversely, cluster at 

the border of the network. While this graph provides suggestive evidence, rather than strong test 

of our hypothesis, it does indicate quite clearly that the phenomenon we are after exists.   

Model 4 introduces our structural holes variable (STHO). Confirming the brokerage argument, the 

effect is positive and significant (p<0,001). Hence, bridging knowledge from organizations belonging to 

disconnected sub-networks induces a variety effect that fosters inventive performance in the focal firm. 

Model 5 introduces the interaction effect between structural holes and network autocorrelation 

(STHOxINTEDEP). The sign of the coefficient is negative and statistically significant (p<0,016), as is also 

confirmed by the two-way interaction graph reported by Figure 4. Therefore, confirming our hypothesized 

explanation, the effects of brokering structural holes on a firm’s inventive performance are positive when 

the firm’s contacts grow relatively slowly; however, as a firm’s contacts start to generate new knowledge at a 

fast pace, absorbing and recombining their knowledge becomes increasingly difficult and, therefore, at some 

point the effects of structural holes turn negative.   
 

5. Discussion  

In this article, we argued that a vantage point can be gained by extending the currently predominant 

perspective on how inter-organizational networks affect firm-level inventive performance. Namely, we 

argued that in addition to a structure of knowledge conduits, inter-organizational networks encompass 

knowledge wellsprings, i.e. active sources of knowledge generation. Therefore, what a firm is able to invent 

depends significantly on the new knowledge that is pumped, at any point in time, into its network of stable 

inter-organizational network relations, and not only on characteristics of the position the firm occupies 

therein. In setting out to analyze inter-organizational networks from this broader perspective, the article 



provided a threefold contribution. First, we showed that the inventive performance of a firm is affected in a 

statistically significant way by dynamics of knowledge growth taking place among firm’s ego-network 

contacts. This means that firm’s inventive performance varies as a function of the knowledge generated by 

its contact firms. Importantly, this effect holds true even controlling for a number of possible alternative 

explanations, including the structural characteristics of firm’s own network position.  

Second, we showed that by taking into account these dynamics of network-level knowledge growth, 

new insights can be gained also on the effects deriving from a firm’s network position, in particular network 

closure and brokerage. Namely, we argued and demonstrated that due to their limited absorptive capacity, 

brokering firms are able to rip the knowledge-access benefits inherent in their diverse ego-network only to 

the extent that their contacts generate new knowledge at a relatively low pace. Conversely, firms are able to 

more fully exploit the knowledge advances made by their contact firms when the latter are tightly related to 

one another and, hence, their trajectories of knowledge growth are overlapping.  

Third, we showed that the knowledge-acess benefits inherent in inter-organizational 

networks are underpinned by a self-reinforcing process. That is, each increase in performance 

taking place within a firm’s ego-network will enhance, directly or indirectly, the inventive 

performance of all other firms in the ego-network; similarly, each decrease in the inventive 

performance of a firm will hinder to some degree the process of knowledge generation of the 

whole network around the firm. As a consequence, firms that are closely connected to one another 

exhibit more similar inventive performance than disconnected firms, and thus the inter-

organizational network tends to partition into fast-growing and sluggish sub-networks. From a 

strategy perspective, this finding seems relevant. Given that firms are steadily embedded in their 

ego-network of inter-organizational relations, much of their fate is likely to be determined by 

whether they belong to a fast-growing or to a sluggish one. From a methodological perspective, we 

used flows of articulated technological knowledge to define inter-organizational networks, on the 

basis that knowledge can be exchanged, voluntarily or involuntarily, only if the firms share 

common practices and tacit knowledge (Brown and Duguid, 2001). Our work suggests that a study 

based on networks defined by inter-firm flows of codified and technical knowledge leads to results 

comparable to studies based on social relationships across actors. Hence, we believe that innovation 

network research could gain a vantage point by shifting the focus from the social dimension of 

networks to their knowledge dimension and from modelling knowledge flows directly.  Moreover, 



network autocorrelation models have been largely employed to study social influences or economic 

geography, but far less used for studies on innovation and knowledge flows, where correlation 

across units is often seen as a methodological problem to tackle. We believe that the use of these 

models can contribute to modelling innovation dynamics in contexts where interdependencies are 

pervasive.  

Our study points to some important implications. Our approach points out that technological 

capabilities growth is a collective phenomenon, as each firm outcome is affected by the growth of other 

players; moreover, firms that are capable to source knowledge from high growth player benefit from the 

endogenous mechanism largely. As a practical implication, our results points to the importance of strategic 

knowledge sourcing on firm innovative performance. We suggest that firms should source knowledge from 

proximate, fast growing technological players to benefit from growth externalities; moreover, we highlight 

that bridging diverse knowledge sources is a viable strategy to innovation but, as technological growth pace 

of sources increases, the beneficial effect of variety is offset by an increasing difficulty in knowledge 

absorption, recombination and use. Firms in a high pace technology based industry should carefully manage 

their technological partner choice in order to balance these effects.  

5.1Limitations of the study  

The study is still in a preliminary phase and, of course, has a number of limitations. Most of our conclusions 

rely on patent data, whose validity as proxies of knowledge flows has been debated. Firms may display 

systematic differences in their propensity to seek patent protection for important technical advances. More 

importantly, patents are by definition examples of codified knowledge, and citation measures therefore may 

not capture flows of the tacit knowledge that often forms the basis for firm-specific capabilities. Tacit 

knowledge flows are virtually impossible to measure, however, and we rely on the assumption that the 

codified knowledge, represented by patents, and tacit knowledge are complements, rather than substitutes, 

and that codified knowledge flows and the tacit knowledge flows of interest are closely linked. There is 

considerable support for this assumption (Patel and Pavitt, 1994).  

Network stability is an issue that is worth further discussion. The semiconductor industry during 

our observed time-span was characterized by turbulence and by a high number of entry and exits in every 

time window. For this reason, network structure was quite unstable, and measuring growth in a dynamic 

sense, as difference between outputs at different times, would have led to the loss of a high number of 



observations. Since we aim to explain knowledge growth, the next step would be to isolate a subperiod 

between 1976 and 2002 (characterized by more stability) and test our theory within a more  

fully dynamic frame.  
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6. FIGURES AND TABLES  

Figure 1: Example of recombination patterns across firms.  
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Figure 2: Semiconductor patents, yearly trend  Figure 3: Network of knowledge flows between 
semiconductor players 1976-2002. Figure 4. Two-way interaction graph  



 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 3: Network of knowledge flows between semiconductor players 1976-2002. 

 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 



Figure 4. Two-way interaction effect between structural holes and network autocorrelation on inventive 
performance 
 

 

 

 

 

 

 

 

 



 

Figure 5: Network of knowledge flows between semiconductor players 1975-2002: faster growing quartile in 

blue, lowest growing quartile in red.  

 
 

 

 

 

 

 



 

 

Table 1. Summary citation statistics by firm type and time interval  

Period Nodes fabless IDM Other 
Vertically 
integrated Entry Exit 

1976-78 41 4 19 6 12 - - 
1979-81 43 5 21 5 12 7 5 
1982-84 48 8 21 7 12 8 3 
1985-87 71 17 29 12 13 25 2 
1988-90 91 23 38 17 13 27 7 
1991-93 121 34 50 24 13 31 1 
1994-96 128 44 48 23 13 15 8 
1997-99 161 61 54 33 13 35 2 
2000-02 173 65 59 36 13 13 1 
Total 877 261 339 163 114 161 29 
 
 



Table 2: Correlation matrix (significance levels in parenthesis)  

 
 



Table 3: Results of Negative Binomial Regression for Number of Citations (* p<10%, ** p<0,05, ***, p<0,01)  

  


